The (Forest) Vision Thing

Logging has always been heavily subsidized in the interior Northwest. That was politically driven and it led us  down the path to overstocked forests. The timber was given away, often below market value let alone at the cost of replacement. That cost is a function of what it takes to grow the next stand. That was never factored in because doing that would have made the timber unsaleable. So the management needed to grow replacement forests has always lagged far behind the desire to keep pushing timber out to the mills.

The natural result is overstocked, and in many cases heavily overstocked, stands that are coming in at hundreds and some times thousands of stems per hectare. That leads to drought-prone soils, and nutrient shortfalls. Fire is the primary means of redress and in lieu of that, insects, so fires suppression hasn’t helped the situation at all.

Speaking of which, insects and those interior forests are so tightly bound they should be considered one biological entity, not two. Spruce budworm, Tussock moth and the Western and Mountain pine beetle are not pests in any sense of the term. Spruce budworm works at the intra-stand level, opening up overstocked forest stands over an 8-10 year period. Tussock moth simply knocks down stands that have encroached onto sites on which they are not suited. It re-sculpts those stands in about three years, probably an adaptation to what we know has been the regular cycling of global temperature over the last 400,000 years. It works at the stand scale. The pine beetle, the most important insect in the Western Hemisphere, will take down all the lodgepole pine for as far as the eye can see, re-setting the clock on those forests. That’s happened in the Canadian Rockies and interior British Columbia over the last 20 years and in many parts of the interior Western US.

Vostok ice-core record, courtesy of AntacticGlaciers.org.

Lodgepole pine only live to be 70-80 years old at which time something has to take them down. We started seriously suppressing fire maybe 100 years ago? I don’t believe the current timeline for lodgepole die-off from the pine beetle is a coincidence.  Moreover if we are experiencing the effects of climate change, that could be one more signal for the beetle to bring it on.

Not enough of that science informed the reaction to those outbreaks, unfortunately. I worked for Forest Service Research  for 26 years and we were the red-haired step-child of the National Forest System. We would write up reports that detailed those relationships only to have many of them ignored. I have an endless supply of stories about that. The key point is this: the only funding available for forest management was from the Knutson-Vandenberg Act – mitigation money for cutting trees. That perverse incentive did exactly what you might imagine, it yoked intelligent management to unprofitable logging, stifling the former and monetizing the latter.

The result, given the excessive drive for that pot-of-gold at the end of the rainbow, was a much darker reality – coal in that rainbow stocking if you like. This story, for example, needs airing. The failure of industrial forestry on the Oregon Coast led to an on-going disaster. That narrative is complicated enough that nobody ever seems ready to write about it. Given the difficult questions it asks about the state of industrial forestry, that’s not surprising, but badly needed.

What’s a forest – and its genes – worth?

A friend recently wrote up a plea that our state do a better job at managing its school fund. I couldn’t disagree with his logic since the state is mandated to maximize that fund which depends on timber receipts from the state forests. This part of his argument, however, caught my eye. He wrote that
 
“[t]he state itself is a poor manager of commercial timberland”
 
I dug up his email address and wrote him back to expand on that notion. The bad news is that the commercial interests have been even poorer managers of timberland. The story hasn’t gained much traction in the press but that management failure is no secret to the scientific community. The details need an honest airing in a pubic arena as well. Lurking at the center of this management disaster are a set of assumptions that have collapsed completely, bringing into question the model used by the timber industry to manage forest lands. What was once a minor irritant in Christmas tree plantations, the so-called Swiss needle cast – it isn’t Swiss but they first took note of it on imported specimens – has collapsed the growth curve for industrial forestlands in the Coast Range, those with mono-cultured stands of Douglas fir. Now that’s a very broad statement, but the evidence for that collapse is itself very broadly distributed, as can be seen from this map:
 
Swiss Needle Cast Cooperative - 2013 Aerial Survey

Swiss Needle Cast Cooperative 2013 Aerial Survey

That image was taken from the OSU Dept of Forestry’s Swiss Needle Cast Cooperative website. The industry funded cooperative was formed when the outbreak started to cause a serious dent in revenue forecasts. It’s from the 2013 survey of the disease. The outbreak has grown worse over time as can clearly be seen from the mapped history of those surveys. A more detailed synopsis of the cause for the epidemic can be found on that same website:

Disease is most damaging close to the coast, and severe disease has been associated with several climate and topographic variables, including spring leaf wetness from precipitation and fog, mild temperatures in the winter and spring, and low-elevation valleys.  It is believed that the current epidemic is attributable to a variety of factors, particularly the increase in Douglas-fir plantation acreage in coastal areas that were previously dominated by spruce, hemlock and alder and have environmental and site conditions conducive to disease development.  Much of the current research is focused on understanding the impacts of soil and foliage nutrition on swiss needle cast disease development and severity, assessing disease growth impacts, and modeling and mapping the current and projected distribution of disease. (my emphasis)

…which is undoubtedly why ‘…spruce, hemlock and alder…‘ grew there in the first place1. This pattern, let’s call it ecosystemic over-reach, has been repeated on the East side of the state as well. That’s a long story itself, but it also needs airing. You can find some of it here in a paper I wrote 20 years ago.

To my mind these two case-studies are symptomatic of a near-complete failure of industrial forestry, something that will, I believe, become even more evident over the timescale at which forest stands develop, on the order of hundreds of years. The evidence continues to mount as time passes.

What follows is my personal indictment of the timber industry.

It was a mistake to ever work on a margin that had Douglas fir replacing mixed stands. Those stands appeared to ecologically uninformed eyes, something that’s inexcusable for an industry who’s business should be all about ecology,  to be too slow-growing to deliver the expected profit. Convinced they could force those forest lands into new modes of production, they instead birthed a slow-growing disaster born of arrogance and short-term thinking. The idea that stands could be worked at that margin for increased yield by planting those mono-cultures is the core of the problem, and a clear reflection of a terrible business model, one that neglected crucial information. That information was readily available to them, but it came from sources outside their narrow blinkered view of the forest world. Those blinkers are derived directly from that arrogance. That was all too obvious from my first days in Oregon in the late 1970s.

Having worked with biologists in my prior life with the early EPA in Las Vegas, I was quick to comment on a policy that had all but eliminated almost every vestige of the older forest. That forest wasn’t just a show-piece I wrote, it contained the very genetic resources necessary to deal with any future problems – problems of exactly the magnitude presented by Swiss needle cast it turns out. Those were my comments to the Siuslaw NF, asking that those genetic resources be preserved. That’s just an outsider feeding unwanted white noise into the system after all. How about the insiders?

Years ago, one of the Forest Service’s stellar research sivliculturalists wrote up a brilliant synthesis about his research work: Nitrogen, Corn and Forest Genetics. He hammered home in no uncertain terms the fallacies behind an agricultural strategy for forest lands and foretold the failure of that strategy, pointing out the near-template like fit of the best adapted seeds to the landscape from which they were gathered.

None of it cut any ice. The political agents of the timber industry were deeply embedded in every advisory board the state had, something I learned first hand as background for my initial foray into the state as a contractor representative. They also had the Oregon Congressional delegation, which had been catering to the industry since the earliest days, safely in tow. That insured that any such scientific mumbo-jumbo would be ignored. The industry would simply engineer a new forest, ecology aside. The Forest Service decided to cut just about all of those older forests, that arrogance spreading like a stain across the policy landscape, one which had been carefully prepared to receive it. Private timber land owners did cutover all of their forestlands, leaving them with an empty gene pool from which to rejuvenate those hard hit stands.

Here’s my personal economic mantra: greed is short-term self-interest, morality long-term self-interest. The stark difference between those two emotional polar-opposites, is a simple function of the time and depth we’re willing to invest our planning horizon with. That’s something many economists have somehow lost in both their qualitative and quantitative analyses. It’s something they need to recover if we expect to stick it out for a while, a while that would include that moral future. It’s one that, I might add, would actually have room for all the genetic resources our forests have to offer, the ones we have so casually discarded in our quest for short-term profit.

1 In the 2002 publication Forest and Stream Management in the Oregon Coast Range, the authors have this to say

Douglas-fir, which is the foundation of timber management throughout most of the Coast Range, will become a less important timber species in moist areas of the western slopes as Swiss needle cast (Phaeocryptopus gaumannii) drastically reduces growth rates in these areas… Hemlock, on the other hand, is resistant to the disease and has relatively good growth rates in these areas.

Sitka Spruce

Sitka spruce in an uncut Oregon coastal forest

Swimming against the current

A few years back, after listening to noontime chatter from the local Oregon PBS affiliate and a political scientist they keep on retainer, I emailed him this note. He’s quite good at what he does, but everything gets filtered through a political lens, naturally enough. It is after all, who he is.

The one I caught that day got under my skin. Judge James Redden has been a force here in the Northwest. The money made from the dams has built a juggernaut of an economic engine, mirrored by a powerful political machine that protects it. That engine was called to account by Redden for its management of the Columbia River System, management that had largely written off natural fish runs for the sake of power generation and the multi-millions of dollars it makes.

First some background and a few definitions. Anadromous fish populations go up rivers to breed, and out to the ocean to feed. Catadromous fish populations reverse that pattern. They go out to the ocean to breed and up the rivers to feed. Why that happens touches on a crucial point. It may sound counter-intuitive, but the temperate ocean and its up-welling nutrient flows, driven by currents and heat gradients, provides a much richer food base for migrating fish than the tropical ocean does.

Not surprisingly, tropical rivers are by contrast much richer than those in the temperate zone. That’s especially true here on the Northwest coast of North America. Those rivers usually emerge from mountain headwaters and streams that are quite barren. They have, after all, only recently come in from the cold. We’ve had friends who, after visiting the Oregon Coast, were sad to report how dirty the ocean was. They had to be reassured that the brown soup they’d seen was the stuff of legend – the legend of Pacific salmon that is.

Archivist for the State of Oregon
Indian dip netting salmon at Celilo Falls (Historical archives – state of Oregon)

Anadromy catapults the physics of the thing into pure magic. The fish are open living systems. They’re able to take and make enough energy to run against the tidal wash from the Second Law of Thermodynamics. They are “pockets of self-organization” delivering the riches of those ocean waters to streams badly in need of a little love.

Ecological science has gradually come to pervade mainstream thought and Redden’s opinions reflect that. That, and a little balance. The native peoples of this part of the world were never asked how they felt about losing their very identity, the ocean gift that was celebrated, eaten, bartered, stored, worshiped… a promise made good year after year. There was certainly no cost-benefit analysis done to find out how many billions of dollars would be lost forever to that native trade and from the loss of that nutrient re-distribution dynamism. Redress is the operative term here.

Econ 101
Indian women drying fish at Celilo Falls (Historical archives – state of Oregon)

There are not many guarantees in this life, but the salmon and their anadromous brethren are certainly one of them. That alone makes them damn near invaluable.